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§1. Introduction

1.1 Pre-requisites
This essay has been written as part of the one year Certificate of Advanced Study in
Mathematics (CASM) course at Cambridge University which coincides with Part
III of the Mathematical Tripos. The starting point is, of necessity, roughly that
reached in the lectures which in this particular year did not include much in the
way of schemes and sheaves, nor, in the case of the author, much in the way of
algebraic number theory.

Thus the frontiers of the subject can safely rest undisturbed by the contents of this
essay. Rather it has been written with a reader in mind corresponding roughly to
the author at the start of the enterprise. That is someone who is interested to find
out what all the fuss was with the French algebraic geometers in the 1960s but is
in need of some fairly elementary background to map out the abstractions involved
and with any luck to avoid drowning in the “rising sea”.

1.2 Approach
In line with the acknowledged wisdom of starting with the work of the masters,
the motivation for the inclusion of topics in this essay has been taken from the
lexically challenging SGA 41

2 by Deligne (D1). This has the added bonus of being
in French thus contributing to the general romance (and opportunity for error) in
the undertaking.

Where this assumes a degree of mathematical sophistication not possessed by this
writer (depressingly often and frequently without it being realised at first) an at-
tempt has been made to include sufficient background material both as catharsis
for the author and as a checklist for the reader. This is mostly taken from standard
works on Algebraic Geometry (e.g. Hartshorne, H1) and Étale Cohomology (e.g.
Milne, M1 and M2).

To make productive use of étale cohomology in, for example, obtaining the results
in number theory that were part of the initial motivation for its development, one
needs to take advantage of the fact that it allows the construction of a cohomology
theory with coefficients in a field of characteristic zero for varieties over fields of
arbitrary characteristic. This is the l-adic cohomology.

The mathematically ambitious might rush to this point and establish the founda-
tions of “Proper base change”, “Duality” etc. before moving on to some significant
results in the theory. This is not the approach of this essay. Rather it aims to recap
the basic ideas from algebraic geometry and cohomology before outlining some of
the generalisations for which we have mainly Grothendieck to thank and Deligne to
explain. Wherever a diagram comes to mind an attempt has been made to include
one, often in lieu of a more closely constructed analysis.

There is a lot of machinery involved (which might be second nature to the more
expert practitioner but their attention will surely be elsewhere by now) but Deligne
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kindly furnishes us with some results as well, and in particular for curves. Philo-
sophically he suggests that curves are the key, and the expert by use of the appropri-
ate “devissages” (which might be translated as “tricks” but this could be considered
to lack the necessary gravitas) can reduce many problems to their study. This essay
gets to the point of setting out some of these results, with minor diversions to pick
up the Brauer and Picard groups and a little bit of Kummer theory along the way.
Of necessity, time has to be spent wandering through some of the basics of Galois
cohomology as this provides the link to certain of the calculations in low degrees.

1.3 Scope
This essay starts with foundational material on algebraic geometry and cohomol-
ogy leading up to the definition of sheaf cohomology on a suitable category. With-
out establishing this common ground, what follows will not make much sense to
the uninitiated. Experts can of course skip this, pausing perhaps only to admire
some of the diagrams.

At this point some of Grothendieck’s (many) ideas are introduced to establish a
generalised notion of topology leading to the definition of étale cohomology as a
particular instance of a sheaf cohomology.

As a base camp for the assault on the cohomology of curves, some results on the
vanishing of the Brauer group (whose construction is carefully explained) and its
implications for cohomology are established. In addition some results about the
Picard group and the Kummer sequence are stated for later use.

Finally results about the cohomology of curves with coefficients in a constant sheaf
are established with a little help from some properties of Jacobians and algebraic
varieties. This can be viewed as the starting point for dealing with higher dimen-
sions (through skilful reduction to the case of curves by fibering, say) and venturing
beyond the safety of torsion sheaves to consider the l-adic case. But not in this es-
say.

1.4 Background
For an algebraic variety (as reviewed below) defined over the complex numbers
there is an induced topology available to allow the application of the methods of
algebraic topology. Where it is defined over an arbitrary algebraically closed field
then the only available construction of open sets is via the Zariski topology which is
too coarse for the methods of algebraic topology to yield much useful information.

In the 1940s Weil identified that the existence of a suitable cohomology theory
over finite fields would enable some key conjectures in number theory to be proved
but was unable to construct it (see Freitag, F1 for the requirements of a suitable
cohomology theory).
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To give a flavour of the issues involved here is a bald statement:

If X is a suitable variety over some finite field Fq then the following zeta function
on X can be defined:

ζ(X, s) = exp

 ∞∑
r=1

Nr
(q−s)

r

r


where Nr is the number of points of X over Fqr . Then Weil made a number of
conjectures about the zeta function (e.g. it is a rational function of q−s and the
corresponding polynomials have degrees that relate to topological properties of
X) and in particular that its zeros and poles satisfy the equivalent of the Riemann
hypothesis (see for example Weil, W2).

In considering some of the issues involved, Weil was led to re-examine the foun-
dations of algebraic geometry (Weil, W1). Building on the work of Serre amongst
others, Grothendieck worked on an approach ”suggested to me by the connec-
tions between sheaf-theoretic cohomology and cohomology of Galois groups on
the one hand and the classification of unramified coverings of a variety on the
other” (Grothendieck, G2).

A decade or so after Weil’s conjectures, Grothendieck introduced an étale topology
for schemes which led to the development of the theory of étale cohomology (based
on sheaves and their derived functors). Typically this involved extensions to the
notion of a point (boring old closed points acquired generic siblings and geometric
cousins who dropped in from outside the space) and of topological open sets (by
coverings which were no longer point sets, only somewhat open and not really all
that topological). In due course these ideas led to the proof of the Weil conjectures
(finally by Deligne in the 1970s) and much else besides.

These abstract, elegant, category-theoretical developments turned out to be very
powerful. They not only provide the expert with beautiful generalisations (and
rather poetic imagery) but also with insights to tackle concrete problems (e.g. rep-
resentation theory of Deligne and Lusztig). Grothendieck’s ideas would seem now
to be firmly established as the basis for doing algebraic geometry.
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§2. Algebraic Geometry Foundations

(The treatment here broadly follows Hartshorne, H1). This section recaps the rela-
tionships between polynomial rings and varieties and provides a formal definition
of sheaves on a topological space. This is a prelude to introducing affine schemes
based on more general rings which leads to a definition of a scheme and the asso-
ciated morphisms.

2.1 Algebraic sets and varieties
Recall that if A = k[x1, · · · , xn] is a polynomial ring over an algebraically closed
field and An is affine n-space over k, then if T ⊆A, the zero set of T is defined as

Z(T) = {P ∈ An|f(P ) = 0 ∀f ∈ T}

and a subset Y of An is an algebraic set if there exists a T⊆ A such that Y = Z(T).

The Zariski topology on An is defined by taking open sets to be the complements
of the algebraic sets. An affine variety is then an irreducible closed subset of An.

Hilbert’s famous Nullstellensatz establishes the following relationships:

An k[x1, · · · ,xn]

Algebraic sets Radical ideals

Varieties Prime ideals

� -1-1
Inclusion
reversing

Figure 1: Nullstellensatz

In particular, a maximal ideal in A corresponds to a minimal irreducible closed
subset in An i.e. to a point. If I(Y ) is the ideal corresponding to an algebraic set
Y , then the affine coordinate ring A(Y ) of Y is the quotient A / I(Y ).

With a few refinements there is a similar set of relationships in projective n-space
over k:
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Pn k[x0, · · · ,xn]

Algebraic sets
Homogeneous
radical ideals
(not “irrelevant”)

Projective varieties
Homogeneous

prime ideals

� -1-1
Inclusion
reversing

Figure 2: Projective Nullstellensatz

Projective n-space has an open covering by affine n-spaces.

2.2 Sheaves on a topological space
Let X be a topological space. A presheaf F of Abelian groups on X consists of
the data

a) for every open subset U ⊆ X , an Abelian group F (U) and

b) for every inclusion V ⊆ U of open subsets of X , a morphism of Abelian
groups

ρ
UV

: F (U)→ F (V ),

subject to the conditions

0) F (∅) = 0 where ∅ is the empty set,

1) ρ
UU

is the identity map F (U)→ F (U), and

2) if W ⊆ V ⊆ U are three open subsets then ρUW = ρV W ◦ ρUV

i.e. the following diagram commutes:

F (U)

F (W )

ρUW

��

F (U) F (V )
ρUV // F (V )

F (W )

ρV W

��

A presheaf of rings, sets or any other category is defined by replacing “Abelian
group” with the appropriate object.
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F (U) is referred to as the sections of F over the open set U . (It is usually a set of
some kind, hence the use of the plural). The ρUV are called restriction maps so we
can write s|V instead of ρUV (s), if s ∈ F (U).

A sheaf on X is a presheaf that satisfies the following additional conditions:

3) If U is an open set, {Vi} an open covering of U and s ∈ F (U) is an
element such that

s|Vi
= 0 for all i

Then s = 0

4) If U is an open set, {Vi} an open covering of U and we have elements
si ∈ F (Vi) for each i, with the property that for each i, j

si|Vi∩Vj
= sj|Vi∩Vj

then there is an element s ∈ F (U) such that

s|Vi
= si for each i

(That is if there are local data which are compatible, they “patch together” to form
something in F (U)).

2.3 Schemes
Schemes generalise the notion of an algebraic variety by extending the relationship
outlined above with a polynomial ring. Any ring A is now considered and “points”
will correspond to prime ideals not just the maximal ones. It also means that we
can consider rings over fields that are not algebraically closed.

2.3.1 Spectrum of a ring

With any ring A we associate a topological space Spec(A) consisting of all the
prime ideals in A. If a is any ideal of A then the subset V (a) ⊆ Spec(A) is the set
of all prime ideals that contain a.

The topology on Spec(A) comes from taking the subsets of the form V (a) to be the
closed subsets. This topology has a basis of open sets {Df for f ∈ A} where

Df = {p ∈ Spec(A):f /∈ p}

To complete the picture we need to define a sheaf of rings O on Spec(A):

If U is an open set in Spec(A), then if s ∈ O(U) is a section we want s to map the
elements of U (prime ideals) into the corresponding localisation of A. i.e. we want
s to be a function

s : U →
∐
p∈U

Ap such that s(p) ∈ Ap

and such that for each p there is a neighbourhood Vp,s contained in U and elements
a, f in A such that for each q in Vp,s we have f /∈ q and s(q) = a

f . In summary:
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Figure 3: Section of sheaf of rings

The spectrum of A is then defined as the topological space Spec(A) equipped with
the sheaf of rings O . To complete the agricultural constructions, we define the stalk
Op to be the germ of sections of O at p as an equivalence class of pairs of open sets
and functions as follows:

Op = {[< U, s >]/ ∼ where p ∈ U and s ∈ O(U)} and ∼ is defined by

[< U, s >] ∼ [< V, t >]⇔ ∃W ⊆ U ∩ V : s|W = t|W

It can be shown that Op is a local ring isomorphic to Ap and for any f ∈ A, the ring
O(Df ) is isomorphic to the localised ring Af (H1 Chapter 2, Proposition 2.2).

A ringed space is a pair (X,OX) whereX is a topological space and OX is a sheaf
of rings on X . It is a locally ringed space if in addition for each point P ∈ X the
stalk OX,P is a local ring. Thus the spectrum of a ring is a locally ringed space.

An affine scheme can then be defined as a locally ringed space which is isomorphic
to the spectrum of some ring.

A scheme is then a locally ringed space (X,OX) in which every point has an open
neighbourhood U such that (U,OX|U

) is an affine scheme.
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2.4 Morphisms
An X-scheme (or a scheme over X) is a scheme Y and a morphism Y −→ X .
This begs the question as to the nature of a morphism of schemes. As schemes
have structure at different levels it is perhaps not surprising that we need two maps
to define a morphism that respects these.

A morphism of schemes can be viewed as a morphism of locally ringed spaces and
comprises two maps (f, f#) whose actions are best illustrated by the following
diagram which uses the above notations:

Y
f−−−−−−−−−−−−−−−−−−−−−−−−→
cts

X Top. spaces

∪ ∪

f−1(V )
f−1

←−−−−−−−−−−−−−−−−−−−−−−−−−− V Open subsets

?

OY

OY (f−1(V ))

����������������)

f∗OY

?

OX sheaves

OX(V ) rings
f#(V )←−−−−−−−−−−−−−−−−−−−−−
hom

?

P∈ f−1(V )

lim−→
V

OY (f−1(V ))
?

f(P) ∈ (V )

lim−→
V

OX(V )

?
OY,P

=

stalksOX,f(P) (local rings)
f#P←−−−−−−−−−−−−−−−−−−−−−−−

local hom

∪ ∪

mY,P
uniquemX,f(P) (maximal ideals)

f#
−1

P−−−−−−−−−−−−−−−−−−−−−−→
=

Figure 4: Morphism of schemes

The final local homomorphism on the stalks requires that the maximal ideal is
pulled back to the maximal ideal.
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§3. Cohomology Foundations

This section recaps the basic constructions from algebraic topology which are
briefly illustrated with simplicial homology and De Rham cohomology. A little
more time is spent setting up Galois cohomology (as this is used later in support of
étale cohomology) and illustrating it with the proof of Hilbert’s Theorem 90.

The notions are then extended to a more general setting of suitable categories
(Abelian with enough injectives) via derived functor cohomology and applied
to the global sections functor of an Abelian sheaf to define sheaf cohomology
(Grothendieck showed that this is a suitable category). This is the level of ab-
straction that will be required for the étale case.

3.1 Algebraic topology
The basic requirement for constructing a cohomology is the identification of a
cochain complex. i.e. a sequence of Abelian groups and homomorphisms

99K Cn
d−−−→ Cn+1 d−−−→ Cn+2 99K s.t. d2 = 0

The cohomology groups can then be defined as

Hn(C∗, d) =
Ker d : (Cn → Cn+1) cocycles

Im d : (Cn−1 → Cn) coboundaries

A most important general result is the extension of a short exact sequence of com-
plexes (i.e. a short exact sequence between the components)

0→ A∗ → B∗ → C∗ → 0

to a long exact sequence of cohomology

· · · → H i(A∗)→ H i(B∗)→ H i(C∗)→ H i+1(A∗)→ · · ·

with a natural map δi : H i(C∗)→ H i+1(A∗).

There are several different methods of associating (co)homology groups with a
topological space and in 1952 Eilenberg and Steenrod (Eilenberg, E1) stated the
axioms (exactness, homotopy, excision and dimension) which would ensure the
essential uniqueness of a theory.

3.2 Singular homology for topological spaces
In the category of topological spaces we can construct singular homology from a
chain complex comprising the (huge!) free Abelian groups Cn(X)) generated by
maps of n-simplices into a space X with the homomorphisms being the boundary
maps on the generators. The corresponding cochain complex then comprises the
groups

Cn(X) = Hom(Cn(X),Z)
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with coboundary homomorphisms d given by

d(ψ)σ = ψ(dσ)

where ψ ∈ Hom(Cn(X),Z) and σ maps an (n+ 1)-simplex into X.

3.3 De Rham cohomology for smooth manifolds
In the category of smooth manifolds we denote the space of smooth r-forms on a
manifold M by Ωr(M). Then exterior differentiation gives us a map

d : Ωr(M)→ Ωr+1(M)

and we can construct the rth De Rham cohomology

Hr
DR(M) :=

Closed r-forms
Exact r-forms

3.4 Group (Galois) cohomology
3.4.1 Theorem: G-modules and boundary operator

A group module A is an Abelian group equipped with the action of a group G that
respects its structure. i.e. a map

G×A→ A

(σ, a) 7→ σa

such that τ(σa) = σ(τa) and 1a = a

and in addition σ(a+ b) = σa+ σb ∀ σ, τ ∈ G and a, b ∈ A.

In short, A is a G-module.

Strictly, if we write Λ for the algebra Z[G] then A is a (left) Λ-module with(∑
nσσ

)
a =

∑
nσ(σa),

Cn(G,A) is then defined as the Abelian group of maps of Gn to A.

The coboundary homomorphism d : Cn(G,A) → Cn+1(G,A) is defined by the
formula (see Serre, S1 §2.2)

(df)(g1, · · · , gn+1) = g1f(g2, · · · , gn+1)

+
∑n

i=1(−1)if(g1, · · · , gigi+1, · · · , gn+1)

+ (−1)n+1f(g1, · · · , gn)

and d2 = 0 as required.
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Thus, for example, we have

H0(G,A) = AG (the group of elements of A fixed by G)

and in H1(G,A) the 1-cocycles correspond to maps f : G→ A where

f(g1g2) = g1.f(g2) + f(g1) ∀ g1, g2 ∈ G (”crossed homomorphisms”)

and the coboundaries correspond to maps of the form

f(g) = g.a− a for some a ∈ A.

To illustrate the fact that some of these groups can actually be calculated, we have
the following example:

3.4.2 Theorem: (Generalised) Hilbert Theorem 90

If L is a finite Galois extension of a field K then H1(Gal(L/K,L∗) = 0

Proof (based on lecture notes on Elliptic Curves)

Write G for Gal(L/K). Suppose f is a 1-cocycle and σ, τ ∈ G. Then in the
multiplicative group L∗ we have, from the above definition,

f(στ) = f(σ).(σ(f(τ)))

and in particular

σ(f(τ)−1) = (σ(f(τ)))−1 = f(σ).f(στ)−1.

Now consider the element of G given by the Poincaré series
∑
τ∈G

f(τ)−1τ .

Since distinct automorphisms in G are linearly independent, this is not 0. That is
there is a y in L∗ such that

x =
∑
τ∈G

f(τ)−1τ(y) 6= 0

Then if we apply σ in G we have (using the above identity)

σ(x) = f(σ)
∑
τ∈G

f(στ)−1στ(y) = f(σ)x

Or f(σ) = σ(x).x−1 and hence f is a co-boundary.

(Hilbert’s original result can be recovered by considering the case where G is
cyclic with σ as a generator and x ∈ L∗ has Norm = 1, then ∃ y ∈ K∗ such
that x = y/σ(y) ).

3.4.3 Profinite group actions

If G is a topological group and A is given the discrete topology we can consider
the sub-category of G-modules where the action is continuous. Cn(G,A) is then
defined as the set of all continuous maps of Gn to A.

A topological group which is the projective limit of finite groups, each given the
discrete topology, is called a profinite group. Such a group is compact and totally
disconnected (Serre, S1).

An important example is the case where we have a field k andK a Galois extension
of k (not necessarily finite) with G the Galois group Gal(K/k). (Serre, S2 Chapter
10, §3).
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G is a profinite group equal to the projective limit of the Galois groups G(K ′/k)
where K ′ runs through the set of finite Galois sub-extensions of K. If A is a
G-module then it is a topological G-module if

∀ a ∈ A, {σ ∈ G |σa = a} is an open subset of G

i.e. A =
⋃
AN where N runs through the open normal subgroups of G. We can

then define:
Hq(G,A) = lim−→Hq(G/N,AN )

In particular if K is the algebraic closure of k, then Hilbert’s Theorem 90 gives us
that

H1(Gal(K/k), K∗) = 0.

3.4.4 Non-Abelian G-modules

If A is not Abelian then the above process does not lead to cohomology groups.
However all is not lost and it is possible to construct H0(G,A) and H1(G,A) in
such a way as to agree with the above when A is Abelian. In the Non-Abelian case
the H i are pointed sets rather than groups.

3.5 Categorical cohomology
3.5.1 Derived functor cohomology

3.5.1.1 Suitable categories for cohomology

The above examples of cohomology rely to some extent on the characteristics of
the category under consideration. A very general category can be defined which
has sufficient properties (such as the notion of kernel, cokernel etc. so we can
have things like exact sequences) and where the morphisms have the structure of
an Abelian group. Such a category is an Abelian category (Milne, M1 Chapter III
section 1).

A complex A∗ in an Abelian category is a collection of objects (now not
necessarily Abelian groups) Ai and morphisms di : Ai → Ai+1 such that
di+1 ◦ di = 0 for all i. We can still define the ith cohomology object H i(A∗) of
the complex A∗ as ker di/im di−1.

A key component in the definition of a cohomology for such a category is the notion
of a derived functor which in turn requires the construction of injective resolutions.
This imposes some additional constraints on a suitable category.

3.5.1.2 Injective resolution and derived functors
(The following definitions and constructions follow Hartshorne, H1 Chapter III
§1).

If A is an Abelian category and A a fixed object, then the functor

Hom(., A) : B → Hom(B,A) is always left exact.

There may be objects where we can go a bit further: An object I of A is injective
if Hom(., I) is exact.
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An injective resolution of an object A of A is a complex I∗ defined for i ≥ 0
together with a morphism ε : A→ I0 such that Ii is an injective object of A for
each i, and such that the sequence

0→ A
ε→ I0 → I1 → · · ·

Is exact.

If the category has enough injectives then every object has an injective resolution.
Now if A has enough injectives and F : A → B is a covariant left exact functor
to another Abelian category, then the right derived functors RiF, i ≥ 0 of F are
constructed as follows:

For each object A in A fix an injective resolution as above and write it as

0→ A→ I∗

and apply F to the complex I∗ to get the complex F (I∗), then take cohomology to
define

RiF (A) := H i(F (I∗))

It can be shown that this construction is independent of the injective resolution
chosen and that RiF is an additive functor (from A to B) with F ∼= R0F and with
long exact sequences following from short exact sequences etc.

3.5.2 Sheaf cohomology

If g is a category (that is assumed to have a final object X) and Ab(g) is the cate-
gory of Abelian sheaves on g (i.e. functors into the category Ab of Abelian groups),
then a key result of Grothendieck showed that Ab(g) is an Abelian category with
enough injectives.

Let Γ = Γ(X, .) : Ab(g) → Ab be the global sections functor and F ∈ Ab(g),
then for each i ≥ 0, the ith derived functor cohomology group of F is defined as

H i(X,F ) = RiΓ(F )

This can be shown to define a cohomology theory that satisfies the required axioms.
In particular, if I is injective then

H i(X,I ) = 0 for all i > 0.
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§4. Étale developments
(”The word apparently refers to the appearance of the sea at high tide under a full
moon in certain types of weather” - Mumford, M5 p175)

There are two objectives:-

1. To extend the concept of topology. The Zariski topology produces very large
open sets with the results (amongst others) that:

(a) If X has complex dimension n then H i(X,F ) = 0 for all i > n al-
though X has real dimension 2n and should have higher cohomology.

(b) If X is an irreducible topological space and A is a constant sheaf then

H i(X,A ) = 0 for i > 0 (Grothendieck’s Theorem).

2. To extend the base field to include those not necessarily algebraically closed.

This section shows how the idea of an open set is abstracted in the definition of
Grothendieck topologies, which uses the notion of a “scheme over a base scheme”
with the link being provided by a morphism of schemes. To ensure that additional
nice properties are available, the allowable morphisms are restricted to étale mor-
phisms, which are defined.

Thus an étale topology is arrived at with the corresponding definition of an étale
site. Sheaves on such a site are defined together with some examples that will
be needed later. This opens up the construction of étale cohomology as a sheaf
cohomology.

Comparison theorems are not really tackled in this essay other than to note the
equivalence of étale and Galois cohomology when the base scheme is the spectrum
of a field.

This section concludes with a brief interlude to collect together the various exam-
ples that can reasonably be considered to represent a point.

4.1 Sheaves on a category - Grothendieck topology
(This generally follows the treatment given by Deligne (D1 Chapter I)).

We have been working with sheaves defined on the category of open sets of a space
X (where the morphisms are inclusion maps) where the available definition is via
the Zariski topology.

The general idea is to abstract the open sets to objects in a more general category
and inclusions to morphisms in this category. These can be used to define a notion
of topology on the category (the Grothendieck topology). In due course by spe-
cialising the category somewhat (to schemes étale over a base scheme) this leads
to non-trivial cohomologies.
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First we need a construction for handling local properties.

4.1.1 Sieves

Let X be a topological space, f : X → R a real-valued function on X .

The continuity of f is a local property:- if f is continuous on every sufficiently
small open set of X , f is continuous on the whole of X .

To formalise the notion of a local property a few definitions can be introduced:

One says that a collection U of open sets in X is a sieve if for all U ∈ U and open
V ⊂ U one has V ∈ U.

One says that a sieve is a covering if the union of all the open sets belonging to the
sieve is equal to X .

Given a family {Ui} of open sets ofX , the sieve generated by {Ui} is by definition
the collection of open sets U of X such that U ⊂ Ui for some Ui.

One says that a property P(U) defined for each open set U of X is local if for
every covering sieve U of each open set U ⊂ X ,

P(U)is true⇔ P(V ) is true ∀ V ⊂ U

(e.g. “ f is continuous on U”).

This idea can be extended to more general categories as follows:

Let g be a category and U an object of g. Then a sieve on U is a subset U of
morphisms of g with codomain U such that if φ : V → U belongs to U and if
ψ : V →W is a morphism in g then φ ◦ ψ : W → U belongs to U.

If {φi : Ui → U} is a family of morphisms, the sieve generated by the Ui is by
definition the set of morphisms φ : V → U which factorise through one of the φi.

If U is a sieve on U and if φ : V → U is a morphism, the restriction UV of U to V
is by definition the sieve on V consisting of the morphisms ψ : V → U such that
φ ◦ ψ : W → U belong to U.

4.1.2 Grothendieck topology

The specification of a Grothendieck topology on g consists of the specification for
each object U of g of a set C(U) of sieves on U , called covering sieves, such that
the following axioms are satisfied:

1. The sieve generated by the identity on U is covering.

2. If U is a covering sieve on U and if V → U is a morphism, the sieve UV
is covering. Equivalently if U = {φi : Ui → U} then the fibre products
Ui ×U V exist and {Ui ×U V → V } is a covering for V . (So fibre products
perform the role that intersections play for point sets).

3. A locally covering sieve is covering. In other words, if U is a covering sieve
on U and if U′ is a sieve on U such that for all V → U belonging to U the
sieve U′V is covering, then U′ is covering.
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A category equipped with a Grothendieck topology is called a site.

4.1.3 Sheaves on sites

The notion of a site allows us to extend the constructions above based on open
sets in a topological space to more general categories. Given a site g, a presheaf
on g is a contravariant functor F from g into the category of sets (or Abelian
groups or rings etc). As before, for every object U of g the elements of F (U) are
called the sections of F over U . In particular if X is a final object in g (i.e. there
is a morphism from every object to X , so if g was the set of open subsets of a
topological space X with inclusion as the morphisms, X would be the final object
in g) then the sections over X are called global sections.

For every morphism V → U and for every s ∈ F (U) one writes s|V (s restricted
to V ) for the image of s in F (V ).

If U is a sieve on U , a section is given U-locally if, for all V → U belonging to
U, there is a section sV ∈ F (V ) such that for every morphism W → V one has
sV |W = sW .

F is a sheaf if, for every object U of g, for each sieve U covering U and every
U-local section {sV }, there exists a unique section s ∈ F (U) such that s|V = sV ,
for every V → U belonging to U.

Explicitly, if {Ui → U} is a covering then F is a sheaf if

F (U)→
∐
i∈I

F (Ui)⇒
∐

(i,j)∈I×I

F (Ui ×U Uj)

is exact.

4.2 Étale morphisms
We want now to apply some of the above constructions to the case of the étale
topology of a scheme. To do this we want the site to comprise schemes over a base
scheme where the morphisms have some additional properties.

Let f : A→ B be a ring homomorphism, then f is flat if B is a flat A-module. (B
is an A-module by restriction of scalars and is flat if−⊗AB is an exact functor on
exact sequences of A-modules).

If f : A→ B is a local homomorphism of local rings then f is unramified if

1. the extension of the maximal ideal in A is the maximal ideal in B (i.e.
f(mA)B = mB) and

2. the residue field of B is a finite separable field extension of the residue field
of A.

A morphism of schemes f : Y → X is of finite type if for each affine scheme V (=
Spec(A)) in a cover of X , f−1(V ) is covered by finitely many affine schemes
U(= Spec(B)) such that each B is a finitely generated A-algebra.
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A morphism of schemes f : Y → X is étale if it is of finite type and the corre-
sponding local homomorphisms

f#P : OX,f(P) → OY,P

are flat and unramified at every point P.

Note that if f : X → S and g : Y → S are étale then each S-morphism from X to
Y is étale. (The flatness of the morphism means that the fibres of f have the same
dimension which is dim X − dim Y ).

4.2.1 Example of étale morphism

Suppose Xis Spec(k) for some field k.

f : X → Y unramified ⇒ Y =
∐

Spec(Ki)

where each Ki is a finite separable field extension of k. So, for example,

Spec(C)→ Spec(R)

is the only non-trivial étale morphism from a connected scheme to Spec(R).

4.3 Étale topology and site
If X is a scheme and g is the category of étale schemes over X then as noted
above the morphisms of g are étale. An étale topology on g is a Grothendieck
topology where a sieve on U is covering if it is generated by a finite family of
(étale) morphisms φi : Ui → U such that the images of the φi cover U .

{Ui}

X

{fi}
��

{Ui} U
{φi}

// U

X

f

��

An étale site Xet of X is the site defined by g with the étale topology.

4.4 Étale sheaves and cohomology
As above, a sheaf F on Xet is a contravariant functor (strictly on g) to an appro-
priate category such that

F (U)→
∐
i∈I

F (Ui)⇒
∐

(i,j)∈I×I

F (Ui ×U Uj)

is exact for every U → X étale and every étale covering {Ui → U}.
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4.4.1 Examples of étale sheaves on Xet

(These are based on Chapter 6 of Milne’s notes M2, where the demonstrations that
they are indeed sheaves can be found)

4.4.1.1 Structure sheaf

For any U → X étale take the obvious global section (cf 2.3 above):-

OXet(U) = Γ(U,OU )

4.4.1.2 Sheaf defined by a scheme

If Z is a scheme over X and U → X étale, then

F (U) = HomX(U,Z)

is a sheaf of sets. In particular:

1. If µn is the scheme (variety) defined by the equation Tn − 1 = 0 then

µn(U) is the group of nth roots of unity in Γ(U,OU ).

2. Similarly, we have the multiplicative group sheaf

Gm(U) = Γ(U,OU )∗ .

One then has
H0(X,Gm) = H0(X,OX)∗

In particular if X is a nice scheme (reduced, connected and proper) over an alge-
braically closed field k then one has

H0(X,Gm) = k∗.

4.4.2 Étale cohomology

As noted above, the category of sheaves of Abelian groups is an Abelian cate-
gory with enough injectives. In particular this applies to the category of sheaves
Sh(Xet) on an étale site. Thus from the functor

F → Γ(X,F ) : Sh(Xet)→ Ab

We can define Hq(Xet,−) to be its qth derived functor.

The theory of derived functors gives the following (amongst other things):

1. H0(Xet,F ) = Γ(X,F ).

2. A short exact sequence of sheaves gives a long exact sequence of cohomol-
ogy.
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In addition, the resulting cohomology theory can be shown to satisfy the Eilenberg
and Steenrod axioms of dimension, exactness, excision and homotopy (see Milne,
M2 Chapter 9).

4.5 Comparision theorems
There are rather complex demonstrations that étale cohomology and simplicial co-
homology agree under suitable circumstances. However, we will just need the
following result:

For X = Spec(K), the spectrum of a field, étale cohomology is identified with the
Galois cohomology.

4.6 What points mean
Where a ring A is the polynomial ring of an algebraically closed field then the
maximal ideals correspond to closed points in the affine space and the prime ideals
correspond to subvarieties.

In Spec(A) the maximal ideals are closed points but the prime ideals are a different
sort of point whose closure corresponds to all their closed points and subvarieties.
Thus for example the closure of the zero ideal, being all of Spec(A), suggests that
this point “touches” all the other points. Thus such points are called generic points.
The result is that the topology on Spec(A) is somewhat richer than that defined for
an algebraic set.

More precisely, if Z is an irreducible closed subset of Spec(A), then a point z ∈ Z
is a generic point of Z if Z is the closure of z (every open subset of Z contains
z). In particular if Z = V (p) for some prime ideal p in A, then p ∈ Spec(A) is its
(unique) generic point (Mumford, M5 Chapter II, Proposition 1).

When we turn to schemes, and in particular when we want to consider neighbour-
hoods in an étale topology we need a more general idea. A geometric point of a
scheme X is a morphism from Spec(k) to X where k is a separably closed field.
If X is a variety (thus defined over some algebraically closed field k) then the ge-
ometric points are identified with the closed points. For an étale scheme we need
to specify how a geometric point is embedded in a neighbourhood as well as in the
scheme:

An étale neighbourhood of a geometric point x of X is a pair (U, u) where U → X
is étale and x = U ◦ u. i.e. we have

Spec(k) Xx
//

U

Spec(k)

??

u

U

X
��
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With a little work, this can be used to extend the idea of a stalk. If F is a sheaf on
Xet and x is a geometric point of X then we can define the stalk

FX = lim−→F (U)

Where the limit is taken over all étale neighbourhoods of x.

(This construction is not used explicitly in this essay, although it is used in the
proof of some of the results referenced).
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§5. Preliminary results

This section introduces some results that will be needed when we come to look at
the cohomology of curves.

The Brauer group of a field is related to a Galois cohomology group and its van-
ishing under certain circumstances gives us a corresponding result in cohomology.
Some time is spent defining central simple algebras used in building the group as
these ideas may not be familiar to those (like the author) who are not well versed
in the theory of Algebraic Groups. A sketch is given of the demonstration of the
relationship with cohomology together with a statement of Tsen’s theorem which
leads to the vanishing of the group.

Some basic facts about the Kummer sequence and the Picard group are stated for
later use. (The equivalence of the definitions of the Picard group in terms of invert-
ible sheaves and in terms of divisors and the relationship between Weil divisors and
Cartier divisors in the case of curves has, perforce, been assumed for the purposes
of this essay).

5.1 Brauer Group and Galois cohomology
5.1.1 Construction of the Brauer group
Recall (Milne, M3 Chapter IV section 2) If A and B are finite dimensional k-
algebras (k a field):

1. A⊗k B is also a k-algebra.

In particular if Z(A) is the centre of A then

Z(A⊗k B) = Z(A)⊗k Z(B).

Note that the tensor product is commutative in the sense that there is a unique
isomorphism A⊗k B → B ⊗k A sending a⊗ b to b⊗ a

and associative in the sense that there is a unique isomorphism

A⊗k (B ⊗k C)→ (A⊗k B)⊗k C sending a⊗ (b⊗ c) to (a⊗ b)⊗ c.

2. A is simple if it has no non-trivial two-sided ideals.

Then Wedderburn’s theorem tells us that A is k-isomorphic to Mn(D) for
some division algebra D (the algebra of square matrices over D).

3. If the centre of A is precisely k then A is a central simple algebra (CSA).

In particular, if A is a CSA then the division algebra D above is also central
since Z(Mn(k) ∼= k and Mn(D) ∼= Mn(k)⊗k D gives us that

k = Z(A) ∼= Z(Mn(D)) ∼= k ⊗k Z(D) ∼= Z(D).

4. If A and B are CSA then A⊗k B is also CSA (M3, Corollary 2.8).
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5. Aop is defined by reversing the order of multiplication in A. Then if A is a
CSA

A⊗k Aop ∼= Mn(k) where n = [A : k] (M3, Corollary 2.9).

6. Note also that Mm(k)⊗kMn(k) = Mmn(k) (M3, Example 2.2).

If A and B are CSAs over a field k, we can define an equivalence relation: A ∼ B
if the corresponding division algebras in 2. above are isomorphic.

Clearly Mn(k) ∼Mm(k) ∀ n,m.

The group operation on classes is given by [A].[B] = [A⊗k B] which is a CSA by
4.

The identity element is [Mm(k)] which follows from 6. above, since if A ∼=
Mn(D),

Mm(k)⊗k A ∼= Mm(k)⊗kMn(D) ∼= (Mm(k)⊗kMn(k))⊗k D
∼= Mmn(k)⊗k D ∼= Mmn(D) ∼ A

The inverse of [A] is [Aop] by 5. above.

Thus the with the properties of the tensor product in 1. above, we have an (Abelian)
group, denoted Br(k).

5.1.2 Field extensions

If A is a CSA over a field A and K ′/K is a finite field extension then A⊗KK ′ is a
CSA overK ′. In fact there exists an integer n > 0 such thatA⊗KK ′ ∼= Mn(K ′)
(Gille, G1 Theorem 2.2.1).

Further, for any A that is a CSA over K there is a finite Galois field extension
K ′/K such that A⊗K K ′ ∼= Mn(K ′) (Gille, G1 Corollary 2.2.6).

This enables us to partition Br(K) into subgroups

Br(n,K) = {A ∈ Br(K)|A⊗K K ′ ∼= Mn(K ′) with K ′/K Galois}.

Then Br(K) =
⋃

Br(n,K)

5.1.3 Theorem: Brauer Group of a field and cohomology

There is the following group isomorphism:

Br(K) ∼= H2(G, K̄∗)

Where K is a field (with closure K̄), G = Gal(K̄/K) and Br(K) is the Brauer
group of K as defined above:

5.1.3.1 Proof (sketch)

Let K̄ be an algebraic closure of K and G = Gal(K̄/K). Then it is a result from
Galois cohomology (S1 Chapter III §1 ) that

Br(n,K) ∼= H1(G,Aut(Mn(K̄)))
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Since a Galois group is a profinite group this cohomology class makes sense if G
acts on Aut(Mn(K̄)).

If φ ∈ Aut(Mn(K̄)), g ∈ G and M ∈ Mn(K̄), then we have an action given by
gφ(M) = g(φ(g−1M)) where G acts on M through its action on K̄.

We want to identify Aut(Mn(K̄)) :-

It is a fact about matrix rings that over a field k all automorphisms of Mn(k) are
inner automorphisms. i.e. given by M → CMC−1 for some invertible matrix C
(Gille, G1 Lemma 2.4.1).

i.e. the corresponding natural homomorphism GLn(k) → Aut(Mn(k)) is surjec-
tive and its kernel = k∗I (the subgroup of scalar matrices). Thus

Aut(Mn(k)) ∼= GLn(k)/k∗I ∼= PGLn(k)

So, specialising to K̄, we have a short exact sequence

1→ K̄∗ → GLn(K̄)→ PGLn(K̄)→ 1

and from the corresponding long sequence in cohomology we have a map

H1(G,PGLn(K̄))→ H2(G, K̄∗)

Or, by substituting in the above relations we have

Br(n,K)→ H2(G, K̄∗).

This can be extended to a map

Br(K)→ H2(G, K̄∗)

Which can be shown to be an isomorphism (Deligne, D1 Chapter III, Proposi-
tion(1.3) )

5.1.4 Tsen’s theorem and the vanishing cohomology
(The following results are provided by Deligne, D1 Chapter III).

If k is an algebraically closed field and K is an extension of transcendence degree
1 over k then Br(K) = 0. (D1, §2).

This leads to the following result in Galois cohomology:

Hq(G,K∗) = 0 for all q > 0 (D1, Proposition 1.6)

and combining with the comparison theorem between étale and Galois cohomology
we have that if k is an algebraically closed field and K is an extension of transcen-
dence degree 1 over k then the étale cohomology groups Hq(Spec(K),Gm) = 0
for all q > 0. (D1, Corollary 2.4).
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5.2 Kummer Theory
5.2.1 Multiplicative group and roots of unity

As noted above, there is the sheaf providing the multiplicative group of units of
sections of the structure sheaf

Gm : U → Γ(U,OU )∗.

We have a map Gm(U)→ Gm(U) given by x 7→ xn and the kernel of this map is
µn(U), as also defined above (n prime to the characteristic of the base field).

If X is a scheme over a separably closed field K and if n is invertible on X , the
choice of a primitive nth root of unity ξ ∈ K defines an isomorphism

Z/nZ→ µn(U)

i 7→ ξi

(This is clearly non-canonical).

5.2.2 Kummer sequence

We have an exact sequence of sheaves resulting from raising to the nth power:

0→ µn → Gm → Gm → 0

This is only exact in the étale topology.

5.3 Invertible sheaves and the Picard group
5.3.1 OX -modules

Let (X,OX) be a ringed space. An OX -module is a sheaf F on X such that for
each open set U ⊆ X, F (U) is an OX(U)-module and restrictions are compatible
with the module structures.

The tensor product F ⊗ G of two OX -modules is the OX -module given by the
sections F (U)⊗ G (U) (where tensoring is over OX(U)).

An OX -module F is an invertible sheaf (i.e. locally free of rank 1) if X can be
covered by open sets U for which F|U is an OX|U

-module that is isomorphic to
OX|U

.

The invertible sheaves on a ringed space form an Abelian group (up to isomor-
phism) under tensor product over OX . This has OX as the identity and F−1 is the
dual OX -module Hom(F ,OX).

5.3.2 Theorem: Pic(X) and cohomology

There is an isomorphism H1(X,Gm) ∼= Pic(X).

Where Pic(X) is the group of isomorphism classes of invertible sheaves on X .
(Deligne, D1, Chapter II, Proposition 2.3).
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§6. Cohomology of curves
(”L’étude des courbes est la clef de la cohomologie étale” - Deligne, D1)

This section brings together many of the constructions and results above to calcu-
late the étale cohomology for the constant sheaf Z/nZ. Results for the multiplica-
tive group are extended via the Kummer sequence to results for the group of units
which can be identified with Z/nZ. Some results about the Jacobian of a curve
(and about Abelian varieties) are quoted to complete the calculations.

We will be considering a projective, non-singular, connected curve X over an al-
gebraically closed field k.

6.1 Cohomology of Gm

Collecting some of the above results we have

H0(X,Gm) = k∗

H1(X,Gm) = Pic(X).

And in addition (Deligne, D1 Chapter III proposition 3.1)

Hq(X,Gm) = 0 for q ≥ 2.

(This is a non-trivial result. Its demonstration relies on the relationship between
étale and Galois cohomology stated in the sub-section on Comparison theorems
and the consequences of Tsen’s theorem stated above. It also involves working
with geometric points, higher direct images, spectral sequences etc. All good fun
but space prohibits the re-interpretation of the proof that can be found in Deligne,
D1).

6.2 Cohomology of µn

(In view of the identification in the section on Kummer theory, we are effectively
looking at cohomology with coefficients in the constant sheaf Z/nZ, which is an
important step along the way towards l-adic cohomology, sadly not considered in
this essay).

If we start from the Kummer sequence (where n is prime to the characteristic of k)

0→ µn → Gm → Gm → 0

We have the corresponding long exact sequence in étale cohomology

0→H0(X,µn)→H0(X,Gm)
n→H0(X,Gm)→H1(X,µn)→H1(X,Gm)

n→H1(X,Gm)→H2(X,µn)→0

Using the fact that H2(X,Gm) = 0.

On the left we have that H0(X,µn) → k∗ → k∗ using the fact that
H0(X,Gm) = k∗. i.e. H0(X,µn) = µn(X).
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On the right we have the following exact sequence to unpick:

H1(X,µn)→ Pic(X)
n→ Pic(X)→ H2(X,µn)→ 0.

For a curve, Pic(X) also has a manifestation as the divisor class group

Pic(X) =
Divisors

Principal divisors

and in particular has a subgroup Pic0(X) corresponding to divisors of degree 0.

(From Milne, M2 Proposition 14.1) we have an exact sequence

0→ Pic0(X)→ Pic(X)
deg−→ Z→ 0

So the torsion is in Pic0(X). Now Pic0(X) can be identified with J(k) where J is
the Jacobian variety of the curve X which has dimension g = genus(X). As J is
an Abelian variety, the map

n : J(k)→ J(k)

is surjective with kernel (Z/nZ)2. (Milne, M4 Theorem 8.2). i.e. we have

H1(X,µn) ∼= (Z/nZ)2g.

Finally from the end of the cohomology exact sequence we have

H2(X,µn) ∼= Z/nZ

and Hq(X,Z/nZ) = 0 for q > 2 (since we can identify µn with Z/nZ).
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§7. Conclusion

This essay has been a fairly elementary excursion into the realms of étale coho-
mology which has required the introduction of a lot of definitions. It has set out the
basic concepts (with some supporting background material) and collected together
some results that lead up to the calculations of the étale cohomology of well be-
haved curves with coefficients in a constant sheaf Z/nZ. This has depended upon
the Kummer sequence being exact which is one of the consequences of the étale
theory. In short, we have indicated how the following results may be obtained for
a (projective, non-singular, connected) curve X of genus g over an algebraically
closed field :

H0(X,Z/nZ) = µn

H1(X,Z/nZ) = (Z/nZ)2g

H2(X,Z/nZ) = Z/nZ
Hq(X,Z/nZ) = 0 for q > 2

There are a number of technical results needed to make the theory respectable
and to demonstrate that it can properly take its place amongst other cohomology
theories, but these have been largely assumed.

The next step towards achieving significant progress (and in particular tackling the
Weil conjectures) would need the additional machinery of l-adic methods. Next
time!
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